Download Phantom Source Widening With Deterministic Frequency Dependent Time Delays
We present a novel method to adjust the perceived width of a phantom source by varying the deterministic inter channel time difference (ICT D) in a pair of signals over frequency. In contrast to given literature that focuses on random phase over frequency, our paper considers a deterministic approach that is open to a more systematic evaluation. Two allpass structures are described, finite impulse response (FIR) and infinite impulse response (IIR), for phase-based phantom source widening and evaluated in a formal listening test. Varying ICT D over frequency essentially alters the inter-aural cross correlation coefficient at the ears of a listener and in this way provides a robust way to control the auditory source width. The subjective evaluation results fully support our observations for both noise and speech signals.
Download Directivity Patterns Controlling the Auditory Source Distance
What influence does the directivity of a sound source have on the perceived distance impression in a room? We propose different directivity pattern designs able to modify the auditory source distance. The idea is accompanied with a comprehensive experimental study investigating the audio effect and its behavior by auralization of directional sound source and room using a 24-channel loudspeaker ring inside an anechoic chamber. In addition to the proposed directivity designs, the study covers influence of auralized room, source-to-receiver distance, signal, and single-channel reverberation. Moreover, simple room acoustical measures perform well in predicting the new effect.